Welcome to Hollister Hills State Vehicular Recreation Area (SVRA)—California State Parks’ first SVRA. Located on the southern tip of San Benito County, just an hour’s drive from San Jose, this unique SVRA features over 8,800 acres of scenic and varied terrain. Visitors are drawn to the natural beauty of the park’s oak woodlands, rolling hills, lush canyons, seasonal creeks, and the many miles of OHV trails for all vehicle types and skill levels.

Located within the Lower Ranch, this children’s area set aside for smaller motorcycles and ATVs. Next to Walnut and Lodge Camps there are two OHV Recreational Opportunities.

The Grand Prix Track (GP Track): Adjacent to the Upper Ranch, the GP Track is a classic closed course track set in a natural terrain of rolling hills and oak woodland. The GP Track is available for OHV riding with proof of current registration and licensing process. Please call 831-638-3390 for further information. (See Upper Ranch map for location.)

State Vehicular Recreation Area
Hollister Hills
7800 Creneca Road • Hollister, CA 95023 • 831.637.3874

Renz Ranch: Located within the Lower Ranch, this 1,200-acre property features predominantly single track trails complete with frequent grade changes and rolling trail contours. These trail systems are designed to accommodate ATVs.

The Nature Area, located in the Lower Ranch, is available to people that lived, and still live, in the vicinity of Hollister Hills SVRA are called “Mohave.” During the late 1860s, Spanish explorers encountered these and other Native Americans in the area. Spain established nearby Mission San Juan Bautista in the late 1760s and founding of the Ohlone people, along with members of other tribes or bands from the area, to build the mission.

In 1822, the Mexican government, which was hostile to the mission, took back the lands from the church, and in 1832, the land was divided into two: one called Ranchos San Juan Bautista and the other was called Ranchos San Juan Bautista and the other was called “Mohave.”

Howard Harris created the orchard for the purpose of producing olive oil. Howard’s great grandfather, Jesse Whitton, was a civilian surveyor for the John C. Fremont expedition that traveled through the area in 1846. After the expedition, Jesse Whitton returned to the area and successfully purchased 500 acres for $50 per acre. The land was passed on through both of these former land grants.

Red-tailed Hawk

This is a large group of plants consisting boundaries between the North American and Pacific plates, resulting in two contrasting terrains. The area east of the fault has dark, clay-rich soils on rolling hills covered in grassland and oak woodlands. The area west of the fault, the landscape is higher and steeper and sits on the Pacific plate that is moving north. This portion of the park contains primarily of much older and more weather-resistant granite rock, with pine, sage and chaparral taking root in the sandy soils. The Pacific and North American tectonic plates have been sliding past each other for 30 million years at a current rate of about 1.3 inches per year.

San Andreas Fault: Cutting northwest through the park, the San Andreas fault zone defines the tectonic boundary between the North American and Pacific plates, resulting in two contrasting terrains. The area east of the fault has dark, clay-rich soils on rolling hills covered in grassland and oak woodlands. The area west of the fault, the landscape is higher and steeper and sits on the Pacific plate that is moving north. This portion of the park consists primarily of much older and more weather-resistant granite rock, with pine, sage and chaparral taking root in the sandy soils. The Pacific and North American tectonic plates have been sliding past each other for 30 million years at a current rate of about 1.3 inches per year.

San Andreas Fault: Cutting northwest through the park, the San Andreas fault zone defines the tectonic boundary between the North American and Pacific plates, resulting in two contrasting terrains. The area east of the fault has dark, clay-rich soils on rolling hills covered in grassland and oak woodlands. The area west of the fault, the landscape is higher and steeper and sits on the Pacific plate that is moving north. This portion of the park consists primarily of much older and more weather-resistant granite rock, with pine, sage and chaparral taking root in the sandy soils. The Pacific and North American tectonic plates have been sliding past each other for 30 million years at a current rate of about 1.3 inches per year.

San Andreas Fault: Cutting northwest through the park, the San Andreas fault zone defines the tectonic boundary between the North American and Pacific plates, resulting in two contrasting terrains. The area east of the fault has dark, clay-rich soils on rolling hills covered in grassland and oak woodlands. The area west of the fault, the landscape is higher and steeper and sits on the Pacific plate that is moving north. This portion of the park consists primarily of much older and more weather-resistant granite rock, with pine, sage and chaparral taking root in the sandy soils. The Pacific and North American tectonic plates have been sliding past each other for 30 million years at a current rate of about 1.3 inches per year.

San Andreas Fault: Cutting northwest through the park, the San Andreas fault zone defines the tectonic boundary between the North American and Pacific plates, resulting in two contrasting terrains. The area east of the fault has dark, clay-rich soils on rolling hills covered in grassland and oak woodlands. The area west of the fault, the landscape is higher and steeper and sits on the Pacific plate that is moving north. This portion of the park consists primarily of much older and more weather-resistant granite rock, with pine, sage and chaparral taking root in the sandy soils. The Pacific and North American tectonic plates have been sliding past each other for 30 million years at a current rate of about 1.3 inches per year.

San Andreas Fault: Cutting northwest through the park, the San Andreas fault zone defines the tectonic boundary between the North American and Pacific plates, resulting in two contrasting terrains. The area east of the fault has dark, clay-rich soils on rolling hills covered in grassland and oak woodlands. The area west of the fault, the landscape is higher and steeper and sits on the Pacific plate that is moving north. This portion of the park consists primarily of much older and more weather-resistant granite rock, with pine, sage and chaparral taking root in the sandy soils. The Pacific and North American tectonic plates have been sliding past each other for 30 million years at a current rate of about 1.3 inches per year.

ATV Laws
In California, there are laws specific to operating ATVs on public lands.

Passengers: Passengers are only allowed on ATV’s designed by the manufacturer to carry a passenger.

Helmet: All persons must wear approved helmet at all times while riding an ATV on public lands.

ATV Safety Certificate Requirement
18 years or older: It is mandatory to complete an ATV safety course before operating an ATV.

Ages 14-17: All riders ages 14 to 17 must possess an ATV Safety Certificate, or be under the direct supervision of a parent, guardian, or another adult who has completed an ATV safety course and has an ATV Safety Certificate in their possession.

Ages 11 and under: All riders 11 and under MUST BE DIRECTLY SUPERVISED AT ALL TIMES. Either the child’s or the parent’s, legal guardian, or someone who is authorized by the parent or legal guardian to operate the child, must possess an ATV Safety Certificate.

ATV Certification
Free ATV Safety Training may be available from the manufacturer for adults and their families who purchase a new ATV. Free ATV Safety Training is also available for California residents under 16 years of age, including those riding used RVs. Contact the ATV Safety Institute at 800-588-3077 for more information.

Accessibility
California State Parks supports equal access. Visitors with disabilities who need assistance may contact the District Office at 831-637-8186 to request a copy of a program brochure. All programs are open to adults, youth, and seniors and available in large print, braille, and audio formats and on the internet.

San Andreas Fault: Cutting northwest through the park, the San Andreas fault zone defines the tectonic boundary between the North American and Pacific plates, resulting in two contrasting terrains. The area east of the fault has dark, clay-rich soils on rolling hills covered in grassland and oak woodlands. The area west of the fault, the landscape is higher and steeper and sits on the Pacific plate that is moving north. This portion of the park consists primarily of much older and more weather-resistant granite rock, with pine, sage and chaparral taking root in the sandy soils. The Pacific and North American tectonic plates have been sliding past each other for 30 million years at a current rate of about 1.3 inches per year.

San Andreas Fault: Cutting northwest through the park, the San Andreas fault zone defines the tectonic boundary between the North American and Pacific plates, resulting in two contrasting terrains. The area east of the fault has dark, clay-rich soils on rolling hills covered in grassland and oak woodlands. The area west of the fault, the landscape is higher and steeper and sits on the Pacific plate that is moving north. This portion of the park consists primarily of much older and more weather-resistant granite rock, with pine, sage and chaparral taking root in the sandy soils. The Pacific and North American tectonic plates have been sliding past each other for 30 million years at a current rate of about 1.3 inches per year.

San Andreas Fault: Cutting northwest through the park, the San Andreas fault zone defines the tectonic boundary between the North American and Pacific plates, resulting in two contrasting terrains. The area east of the fault has dark, clay-rich soils on rolling hills covered in grassland and oak woodlands. The area west of the fault, the landscape is higher and steeper and sits on the Pacific plate that is moving north. This portion of the park consists primarily of much older and more weather-resistant granite rock, with pine, sage and chaparral taking root in the sandy soils. The Pacific and North American tectonic plates have been sliding past each other for 30 million years at a current rate of about 1.3 inches per year.

San Andreas Fault: Cutting northwest through the park, the San Andreas fault zone defines the tectonic boundary between the North American and Pacific plates, resulting in two contrasting terrains. The area east of the fault has dark, clay-rich soils on rolling hills covered in grassland and oak woodlands. The area west of the fault, the landscape is higher and steeper and sits on the Pacific plate that is moving north. This portion of the park consists primarily of much older and more weather-resistant granite rock, with pine, sage and chaparral taking root in the sandy soils. The Pacific and North American tectonic plates have been sliding past each other for 30 million years at a current rate of about 1.3 inches per year.

San Andreas Fault: Cutting northwest through the park, the San Andreas fault zone defines the tectonic boundary between the North American and Pacific plates, resulting in two contrasting terrains. The area east of the fault has dark, clay-rich soils on rolling hills covered in grassland and oak woodlands. The area west of the fault, the landscape is higher and steeper and sits on the Pacific plate that is moving north. This portion of the park consists primarily of much older and more weather-resistant granite rock, with pine, sage and chaparral taking root in the sandy soils. The Pacific and North American tectonic plates have been sliding past each other for 30 million years at a current rate of about 1.3 inches per year.